DEEP CARBON EXPLORERS: This is a handy list of people and their research that will feature in *Carbon from Crust to Core. Please note this is a dynamic list to which names are being added (or removed) as the book progresses.* Last revised 3 May 2017 | Abelson | Phil Ableson - early research on clumped isotopes | |----------|---| | Agricola | Georgius Agricola (Georg Bauer) (1494–1555), German naturalist and 'Father of Mineralogy | | Anderson | Don Anderson - pioneer of analysis of CO2-carbon dissolved in magmas (melt inclusions) | | Bailey | Ken Bailey , for describing the first deep carbonate minerals and showing that their surface manifestation of deep carbon is not related to current models for plate tectonics or plumes | | Balkwill | David Balkwill - DOE Subsurface Science Program. | | Barnes | Yvan Barnes (USGS) - pioneering recognition of worldwide coincidence between igneous carbon emissions and active tectonic and volcanic regions | | Beyssac | Olivier Beyssac - metamorphic carbonaceous matter erosion and deposition | | Boetius | Antje Boetius , seafloor methane and other deep life discoveries | | Bridgman | Percy Williams Bridgman (1882–1961), application of high pressure physics to mineralogy | | Buffon | Georges-Louis Leclerc, Comte de Buffon (1707–88), Age of the Earth, heat loss from interior | | Bullard | Edward (Teddy) Bullard – geodynamo, continental drift | |-------------|---| | Cartigny | Pierre Cartigny - how do diamonds form in the mantle? | | Cragg | Barry A. Cragg - Cell counts and other work conducted by Parkes and Cragg was essential for the discovery of microbial life in the deep subseafloor). | | Cuvier | Georges Cuvier (1769–1832), major figure in establishing palaeontology in Paris, catastrophism | | D'Hondt | Steven L. D'Hondt - pioneer of deep biosphere research in the marine realm. D'Hondt and Jørgensen were co-chief scientists of ODP Leg 201, i.e. the first scientific drilling initiative dedicated to the deep marine biosphere. ODP Leg 201 was probably the most important trigger for the development of the field. | | Dawson | Barry Dawson for connecting carbon in the Earth, to ancient carbon in diamond and kimberlite, with the long trajectory leading to the young carbonate volcano (Oldoinyo Lengai) in the East African Rift: he wrote the most recent and best memoire on the Gregory Rift, not long before he died. | | Denies | Peter Denies - for leading the effort to use diamonds to understand deep carbon. | | Dubrovinski | Leonid Dubrovinsky - ultra-high pressure high temperature crystallography of C-bearing phases (e.g. diamonds, carbonates, carbides etc.) | | Epstein | Sam Epstein - pioneer stable isotope geochemist who developed numerous methods to measure carbon isotopes of many forms of carbon | | Eugster | Hans Eugster - developed methods to quantify thermodynamic properties of C-O-H fluids | | Fei | Yingwei Fei , - potential role of iron carbide the Earth core
Mario Santoro , high pressure physics and chemistry | | Fourier | Joseph Fourier (1768–1830), Analytical theory of heat to be applied to finding Age of the Earth | |-------------|---| | Fredrickson | Jim Fredrickson - DOE subsurface science program, metabolic activities of continental subsurface microbes. http://www.pnnl.gov/science/staff/staff_info.asp?staff_num=5738 Fredrickson JK, and M Fletcher. 2001. Subsurface Microbiology and Biogeochemistry. Wiley-Liss, New York, NY). | | Fukao | Yoshio Fukao geodynamics of subducted slabs | | Galimov | Yu Galimov - for leading the effort to use diamonds to understand deep carbon. | | Galli | Giulia Galli important contributions to deep carbon science via her state-of-the-art molecular dynamics simulations. | | Ghirose | Bill Ghiorse wcg1@cornell.edu DOE Subsurface Science Program he discovered the abundant and diverse microbial biodiversity in the continental subsurface | | Giggenbach | Werner Giggenbach evolution of C-O-H fluids in hydrothermal systems developed the standard volcanic gas sampling methods used in the late 1970's, and led research linking volcanic gas outputs to subduction | | Gilbert | William Gilbert (1544–1603), geomagnetism, first to suggest Earth has an iron core | | Gold | Thomas Gold deep drilling Sweden abiotic hydrocarbons, primordial methane | | Goldschmidt | Victor M. Goldschmidt (1888 - 1947), whose classification of the behaviour of the elements in the Earth and meteorites laid the basis of modern geochemistry. | | Green | David Green - petrologist who explored the fundamental roles that very small contents of carbon and hydrogen (as water, methane, diamond or graphite, and carbon dioxide) play in the mineralogy and melting characteristics of the Earth | | Hall | Howard Tracy Hall - recognized as first developer of methods to synthesize synthetic diamonds in 1954 | | Hayes | John M. Hayes <u>jhayes@whoi.edu</u> - pioneered developments in compound-specific stable-isotope analyses and contributed to the field with insights into the development of the global carbon cycle over geologic time). http://www.whoi.edu/nosams/page.do?pid=50996&tid=282&cid=74886 | |-----------|---| | Hazen | Bob Hazen - an early pioneer in high-pressure crystallography | | Helgeson | Harold Helgeson - developed thermodynamic basis for calculating the properties of minerals, aqueous species and volatiles as a function of temperature and pressure | | Hemley | Rus Hemley is an acknowledged leader in high-pressure research including geophysical research. | | Hess | Harry Hess (1906–1969), sea-floor spreading 1960 | | Holmes | Arthur Holmes | | Hooke | Robert Hooke (1635–1703), improvement of the microscope, study of thin sections | | Hoyle | Fred Hoyle – carbon and nucleosynthesis | | Hutton | James Hutton (1726–97), uniformitarianism, concept of deep geologic time | | Inagaki | Fumio Inagaki , science and technology of exploring life through ocean drilling | | Jeffries | Harold Jeffries (1891–1989), Earth's outer core is molten | | Jørgensen | Bo B. Jørgensen - pioneer of deep biosphere research in the marine realm. D'Hondt and Jørgensen were co-chief scientists of ODP Leg 201, i.e. the first scientific drilling initiative dedicated to the deep marine biosphere. ODP Leg 201 was probably the most important trigger for the development of the field. | | Kant | Immanuel Kant (1724–1804) Three treatgises on the Lisbon Earthquake (published 1756). Suggested that earthquakes have a natural cause,, and | |-----------|--| | | his work is the beginnings of seismology | | Keeling | David Keeling – measuring atmospheric carbon dioxide at Mauna Loa
Observatory from 1958 | | Lehmann | Inge (1888–1993). Discovered solid inner core (1936). Lived 104 years, a record for a woman scientist | | Le Pichon | Xavier Le Pichon (1937, Vietnam). Comprehensive model of plate | | | tectonics (1968), who showed the theory could account for the evolution of ocean basins | | Lollar | Barbara Sherwood Lollar , deep and old Hydrogen | | Lonsdale | Kathleen Lonsdale - a trailblazing scientist (crystallographer) who worked | | Donsdare | on many carbon-related structures (notably benzene). | | Lyell | Charles Lyell (1797–1875), <i>Principles of Geology</i> , and, uniformitarianism | | Martinez | Isabelle Martinez - abiotic CO2 reduction into solid carbon in the oceanic crust. | | Matthews | Drummond Matthews and Frederick Vine – 1963 seafloor spreading and continental drift | | Matuyama | Motonori Matuyama (October 25, 1884 – January 27, 1958) was a Japanese geophysicist who was the first to surmise that the Earth's magnetic field had undergone reversals in the past. | | McGammon | Catherine McCammon - Properties and processes within the mantle | | McKenzie | Dan McKenzie – principles of plate tectonics, convection in the mantle, sedimentary basins | | Menez | Bénédicte Menez - biotic and abiotic reduced carbon in serpentines, hidden carbon on seafloor | | Morgan | (William) Jason Morgan (1935) plate tectonics, Princeton. Doctoral advisor Robert Dicke | |------------|--| | Nestola | Fabrizio Nestola- research on the formation of diamonds and their trapped inclusions. | | Onstott | Tullis Onstott , microbiology of deep subsurface using bore holes in deep mines | | Parkes | R. John Parkes - Cell counts and other work conducted by Parkes and Cragg was essential for the discovery of microbial life in the deep subseafloor). http://www.sciencedirect.com/science/article/pii/S0025322714000425). | | Pedersen | Karsten Pedersen , Swedish subsurface deep drilling programme | | Phelps | Tommy J. Phelps - DOE Subsurface Science Program, instrumental in devising the methods used in collecting representative samples from the continental subsurface. Transferred same methods to marine sampling ODP (now IODP). | | Rhodes | Cecil Rhodes - consolidation of 100s of small claims enables deep mining in kimberlites | | Ringwood | Ted Ringwood - pioneer petrologist whose work paved the way for us to understand the mineralogical constitution of the Earth's mantle | | Sedgwick | Adam Sedgwick (1785–1873), Devonian system (with Roderick Murchison) | | Shoemaker | Gene Shoemaker , through his life and death study of meteorite impacts still tragically undervalued by the Earth science community, gives us a planetary perspective of our precious carbon-rich planet. | | Smith | William Smith (1769–1839), stratigraphy, made first geological map on a national scale | | Sverjensky | Dimitri Sverjensky - Deep Earth Water model that has revolutionized deep fluids | | Toit | Alexander du Toit (1878–1948), correlation between South America and South Africa | |-----------------|---| | Treibs | Alfred E. Treibs (1899 – 1983) was a German organic chemist who is credited with founding the area of organic geochemistry) | | Tuzo-
Wilson | John Tuzo Wilson (1908–93), mantle hot-spots (1963) and transform faults. Achieved worldwide acclaim for contributions to plate tectonics. Wilson Cycle and subduction | | Vine | Drummond Matthews and Frederick Vine – 1963 seafloor spreading and continental drift | | Wegner | Alfred Wegener (1880–1930), continental drift | | Werner | Abraham Gottlob Werner (1749–1817), foundation of mineralogy and systematic stratigraphy | | Wobber | Frank Wobber - visionary DOE program manager in 80's and 90's. Doe Report of 1986 refers Together with Bill Ghiorse wcg1@cornell.edu DOE Subsurface Science Program he discovered the abundant and diverse microbial biodiversity in the continental subsurface | | Wood | Bernard Wood - proposed iron carbide as a component of Earth's inner core | | Wyllie | Peter Wyllie , godfather of the petrology of melted carbonate at high pressure and hence the origin of carbonate melt, and thereby requiring solid carbonate minerals in the mantle (subsequently found). | | ZoBell | Claude ZoBell - pioneering marine subsurface scientist; important as discoverer of biofilms; abundance of subsurface life; sulfate reducing bacteria. |